LIFS5310 Biostatistics: Theory and Application in Life Science Research, Spring 2022

Instructor
Yu Hu MATH and LIFS Email: mahy@ust.hk Office: 3443
Office Hour: TBA

Meeting Time and Venue
Lectures: Mon & Wed, 9am to 10:20am at Rm 2304 (Lift 17-18).

Note: Real-time online mode during the add/drop period Feb 4-17. The Zoom links can be found on the course page on Canvas.

Course description
Statistical analysis has become an essential component in research for testing hypotheses and designing experiments. This course is tailored to PG students in Life Science and related disciplines. We will introduce common methodologies used in research, such as ANOVA, linear regression, nonparametric methods, and bootstrapping. The students will also gain practical skills in using R for analysis.

Prerequisite
The students are expected (i) to know calculus and basic probability and (ii) to have some experience of programming (in any language). Requirement (ii) can be satisfied by learning any R tutorial on their own before the course.

No auditing policy: Please register. Commitment and participation are essential for this course. The homework assignments will take time to complete but are necessary to ensure effective learning.

Exclusion
None

Weekly outline
- Week 1,2 Introduction, basic probability concepts
- Week 3 Hypothesis testing, t test and p-values
- Week 4 Analysis of variance (ANOVA)
- Week 5 Two-way ANOVA and multiple testing
- Week 6 Experimental design
- Week 7 Model assumptions and nonparametric tests
- Week 8 Linear regression
- Week 9 Conditional dependence and partial correlation
- Week 10 Model selection
- Week 11 Logistic regression and generalized linear model
- Week 12 Bootstrapping
- Week 13 Review and synthesis
Intended Learning Outcomes
Upon successful completion of this course, students should be able to:
1. Know how to translate scientific questions into appropriate statistical models and hypothesis
2. Know how to perform statistical analysis using R given experimental data
3. Know how to interpret analysis results in the scientific context
4. Know how to determine the power of hypothesis testing and use it to guide experimental design
5. Develop statistical thinking and understand the basic theories, potential pitfalls, and limitations of main methods

Teaching and Learning Activities
Scheduled weekly activities: 3 hours

<table>
<thead>
<tr>
<th>Teaching Activities</th>
<th>Course ILOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>1,2,3,4,5</td>
</tr>
</tbody>
</table>

Evaluation
Credit points: 3

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Course ILOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework 50%</td>
<td>1,2,3,4</td>
</tr>
<tr>
<td>In-class discussion and participation 15%</td>
<td>1,3,4,5</td>
</tr>
<tr>
<td>Final exam 35%</td>
<td>1,2,3,5</td>
</tr>
</tbody>
</table>

Homework includes derivations, proofs, and numerical (programming) problems.
Final exam format: open book exam. More details will be determined later.

We will use Canvas to distribute and collect the homework and exam. We will also send course announcements via Canvas. So please turn on the notification or check regularly. When you have a question, you are encouraged to post it under the Discussion tab on Canvas, so others can see it and may also help to answer. The instructor will also check and answer the Discussion tab regularly.

Important: You can and are encouraged to discuss and collaborate with classmates on homework, as long as each person submits their own answers (copy-and-paste is not allowed).

References
Lecture slides are the primary reference materials and will be uploaded to Canvas before the lecture (usually the evening before).

Optional textbook/reference:
Biostatistical analysis by J. Zar [reserved at HKUST library]
Introductory Statistics with R by P. Dalgaard [available online from HKUST library]