1. **Instructor:** Dr. Julie Semmelhack (jsemmelhack@ust.hk)

2. **Course Description**
 The course will introduce principles of neuroscience with a focus on the systems/neural circuit level. We will begin with the study of neurons: their structure, the propagation of action potentials and transfer of information between neurons. We then move to the sensory systems such as olfaction, hearing, and vision and discuss how external signals, e.g. light, are converted into neural signals, where these signals travel in the brain, and how they are processed. Next we study the control of movement. Finally, we cover the systems which control memory. Throughout the course, students will learn about new techniques such as functional imaging, optogenetics, and connectomics that are driving new discoveries in neuroscience. As part of the group project, students will learn how to read, evaluate, and present a scientific paper, a key skill in any research career, and also useful to anyone interested in public health or technology.

Credit Points: 3
Pre-requisite: LIFS 2040

3. **Intended Learning Outcomes**
 Upon successful completion of this course, students should be able to:

<table>
<thead>
<tr>
<th>No.</th>
<th>ILOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Describe the mechanisms of sensory and motor systems.</td>
</tr>
<tr>
<td>2</td>
<td>Design neuroscience experiments using modern techniques.</td>
</tr>
<tr>
<td>3</td>
<td>Explain and evaluate a scientific paper.</td>
</tr>
</tbody>
</table>

4. **Assessment Scheme**
<table>
<thead>
<tr>
<th>Assessment</th>
<th>Assessing Course ILOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% Problem Set</td>
<td>1, 2</td>
</tr>
<tr>
<td>30% Midterm</td>
<td>1, 2</td>
</tr>
<tr>
<td>25% Group project</td>
<td>3</td>
</tr>
<tr>
<td>40% Final</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

5. **Meeting Time and Venue**
 Venue: Zoom for at least the first two weeks. After that, mixed mode, location TBA.
 Schedule: Monday 4:30-5:50 pm, Friday 12:00-1:20
6. **Student Learning Resources**
 Two copies are on reserve at the Library.

 Lecture slides will be posted on Canvas before lecture, and video of the lectures will be available.

7. **Academic Integrity and Fairness**
 In order to ensure fair assessments, the University regulations on Academic Integrity (http://ugadmin.ust.hk/integrity/regulations-1.html) will be enforced.

8. **Learning environment**
 Responsibilities of the Instructor
 I will:
 - Make every effort to build a valuable learning experience
 - Work to ensure that exams and assignments are fair and helpful
 - Respond to your feedback on how to make the course better
 - Answer your questions respectfully

 Responsibilities of students
 I expect you to:
 - Arrive on time (let me know ahead of time if you have to arrive late or leave early due to an unavoidable conflict)
 - Avoid disturbing other students during lecture; silence phones, do not have side conversations
 - Ask questions if anything is unclear
 - Treat other student’s questions with respect

9. **Schedule**
 1. Overview; course organization, history of neuroscience
 2. Neurons, glia and the resting membrane potential
 3. The Action potential
 4. Synaptic transmission
 5. Structure and evolution of the nervous system
 6. The Systems of Smell and Taste
 7. The Eye, Photoreception
 8. Problem set due. Midterm review (review problem set)
9. Retinal circuits
10. Midterm
11. Visual cortex
12. The Auditory system
13. Vestibular system and Group project info; how to read and present a paper
14. Touch and temperature sensing
15. Group project session; attendance required
16. Spinal control of movement
17. Brain control of movement
18. Molecular and cellular mechanisms of memory
19. Memory Systems
20. Student presentations
21. Student presentations
22. Student presentations
23. Student presentations
24. Student presentations
25. Review Session