1. **Instructor**

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Room</th>
<th>Extension</th>
<th>E-mail address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joyce P.Y. MAK</td>
<td>6279</td>
<td>x8718</td>
<td>jpymak@ust.hk</td>
</tr>
<tr>
<td>(Course Coordinator)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. **Teaching Assistant**

NA

3. **Meeting Time and Venue**

Date/Time:
- Monday: 13:30–14:50 Lecture
- Wednesday: 13:30–14:50 Lecture

Venue: Room 6591

4. **Course Description**

Cancer is one of the most important causes of death in our society and has been the driving force behind major research discoveries. A better understanding of the basic biology of cancer has led to more effective treatments, enhanced detection methods, and the development of prevention strategies. This advance undergraduate course will provide a comprehensive overview of the biology of cancer. Through interactive lectures, fundamental concepts in the mechanisms of carcinogenesis, epidemiology, etiology, detection, and treatment of cancer will be introduced. Emphasis will be placed on the current understanding of common cellular and molecular mechanisms that contribute to the development of cancer. In-depth discussion and analysis of original literature of selected topics will also give students an appreciation of the complexity and state-of-the-art of current research.

Prerequisites: LIFS3020 or LIFS3140

4th year UG students

5. **Intended Learning Outcomes**

On successful completion of this course, students are expected to be able to:

1. Describe in detail the key concepts and principles of current cancer biology.
2. Apply key concepts and principles to the analysis of cancer-related issues, including cancer epidemiology, etiology, detection, and treatment.
3. Appraise original biomedical literature to analyse experimental design and critically evaluate the interpretations.
4. Organise biomedical information and communicate it effectively both orally and in writing.
5. Work and coordinate effectively in a team to develop collaborative projects.

6. **Assessment Scheme**

Take home literature review (50%, for assessing ILOs 1 & 2) (instructor-assessed)

Group literature review (50%, for assessing ILOs 1, 2, 3 & 4) (peer-assessed)

Poster (25%)

Oral presentation (25%)
7. **Student Learning Resources**
Lecture notes
Primary literature and review articles

8. **Learning Activities**
1. Attending and participating in lectures (for attaining ILO 1).
2. Reading and discussing assigned research articles (for attaining ILOs 1 and 2).
3. Participating in a group literature review, which includes an oral presentation and a written report, on a cancer-related topic (for attaining ILOs 1, 2, 3, and 4).

9. **Course Schedule**

Cancer Defined
1. Characteristics of cancer
 Multi-step tumorigenesis and the evolution of cancer

Studying Cancer
2. Models for cancer research

Causes and Risk Factors of Cancer
3. Cancer epidemiology
 Heredity and cancer
4. Chemicals and cancer
 Radiation and cancer
5. Infectious agents and cancer

Cellular and Molecular Hallmarks of Cancer
6. Oncogenes and tumor suppressor genes
7. Genetic and epigenetic alterations in cancer
8. Growth factors and receptors in cancer
9. Growth factors and receptors in cancer
10. Cell cycle control and cancer
11. Apoptosis and cancer
12. DNA repair defects and cancer
13. Senescence, cell immortalization and cancer
14. Angiogenesis and cancer
15. Angiogenesis and cancer
16. Metastasis
17. Cancer stem cells
 Cancer immunology

Cancer Detection & Treatment
18. Conventional surgery, chemotherapy, and radiotherapy
19. Targeted therapy
20. Targeted therapy
21. Immunotherapy
22. Current advances in cancer detection

Presentation
23. Group presentation and discussion
24. Group presentation and discussion

NB: Since the topics are highly integrated, all the estimated time and order are approximations.