LIFS4550 Biochemistry of Nutrition

Spring semester, 2022
Class time: **Mon 15:00-16:20 & Friday 10:30-11:50**
Venue: 2306, Zoom (until 17 Feb, Updated later)

Instructor:
Prof. Tuan Anh NGUYEN,
Email: tuananh@ust.hk, Tel: 3469-2679, Room: 5513

Course goals
- LIFS4550 course will provide you with the knowledge of **nutrition biochemistry** to understand how nutrition is processed and absorbed in our bodies.
- This course also covers many **malnutrition diseases**. In addition, this course provides you the essential **foundation for further studies** in metabolism, nutrition, and health care after graduate.
- The LIFS4550 course will help the students improve **multiple essential skills**, which will benefit them in applying for **jobs and studying postgraduate**. They include “active learning,” teamwork, oral and written presentation skills.

Learning outcomes
On successful completion of this course, students are expected to be able to:
1. Understand the **essential components** of the major food groups and how they are **metabolized** in our bodies.
2. Assess the role of scientific knowledge in understanding **dietary deficiency** and treating **diet-related problems**.
3. Understand and analyze deeply the **current research papers** related to nutrition, well-equipped to study nutrition-related fields in postgraduate study.
4. **Work in a team, active learning, and report** the work results in oral and written formats.

Course description
The biochemistry of significant food ingredients, including carbohydrates, lipids, proteins, phytochemicals, alcohol, vitamins, water, and minerals, will be studied. In addition, the metabolism, nutritional properties, and functions of these ingredients will be emphasized.

Teaching approach
The course content is mainly delivered through two methods, **interactive lectures** and **blended learning**. The first few **lectures** of the course are the introduction to nutrition and the background of metabolism. Then, each aspect of the food ingredients is given in the subsequent lectures.
The students need to find partners to **work on a project**, which requires active learning, critical thinking, extensive collaboration, and presentation. In a project, a team of students needs to read one core paper and many related papers, **present the contents orally** as a group, and submit a **written report** individually.
Assessment scheme

A. Team presentation and individual report (80%):
- 5 papers will be chosen for the five topics, Carbohydrates, Lipids, Proteins, Alcohol, and Fat-Soluble Vitamins.
- Each group will choose one paper to work on.
- The students will choose 1-2 partners to form a group and work together to make and present the paper orally. If the students cannot find partners, they will randomly be teamed up by the instructor.
- **Team presentation (50%)**: No specific format required.
 + Each group will be given 15 minutes for the presentation.
 + Q/A section will be conducted for all groups presenting the same topics at the end of the presentation lecture.
 + In each group, one student can present as a representative, or all students can participate in the presentation.
 + The oral presentations will be scored as one for a whole group.
- **The individual report (30%)**: Scientific format.
 + Each student needs to write a report related to the assigned paper.
 + The report should be written in a scientific form, including abstract, introduction, results, summary, discussion, and perspectives.
 + The students should summarize and discuss what they learn from the papers.
 + The report should be submitted in the course's final week on Canvas.
 + The assigned report will be scored individually.
 + The students need to check plagiarism carefully.

- List of 5 papers (will be updated soon)

B. Final Exam (written exam or assignment, 20%): The final exams will contain the multiple choice questions and essay questions. **Only few chapters** are selected to test in final exam.

Lecture outline

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 4</td>
<td>Course introduction</td>
<td>TAN</td>
</tr>
<tr>
<td>Feb 7, 11</td>
<td>Carbohydrates</td>
<td>TAN</td>
</tr>
<tr>
<td>Feb 14, 18</td>
<td>Lipids</td>
<td>TAN</td>
</tr>
<tr>
<td>Feb 21</td>
<td>Project-team formation</td>
<td>TAN</td>
</tr>
<tr>
<td>Feb 25, 28</td>
<td>Lipids</td>
<td>TAN</td>
</tr>
<tr>
<td>Mar 4</td>
<td>Proteins</td>
<td>TAN</td>
</tr>
<tr>
<td>Mar 7</td>
<td>Alcohol</td>
<td>TAN</td>
</tr>
<tr>
<td>Mar 14, 18, 21</td>
<td>Fat-soluble vitamins</td>
<td>TAN</td>
</tr>
<tr>
<td>Mar 25</td>
<td>Group discussion</td>
<td>TAN</td>
</tr>
<tr>
<td>Mar 28</td>
<td>Presentation 1</td>
<td>TAN</td>
</tr>
<tr>
<td>Apr 1, 4, 8, 11</td>
<td>Presentations 2-5</td>
<td>TAN</td>
</tr>
<tr>
<td>Apr 22, 25, 29</td>
<td>Water-soluble vitamins</td>
<td>TAN</td>
</tr>
<tr>
<td>May 6</td>
<td>Minerals</td>
<td>TAN</td>
</tr>
</tbody>
</table>

Reference books
1. Advanced nutrition and human Metabolism-Gropper, Smith and Groff
2. Color Atlas of Biochemistry-Koolman and Roehm
3. Harper's Illustrated Biochemistry- Murray, Bender, Botham, Kennelly, Rodwell, and Well.