Division of Life Science The Hong Kong University of Science & Technology LIFS3020 Molecular & Cellular Biology II (2023)

1. Instructors

Instructors	Office	Extension	E-mail address
Randy Y.C. POON (Course Coordinator)	Room 5526	x8703	rycpoon@ust.hk
Pingbo HUANG	Room 5463	x7305	bohuangp@ust.hk

2. Teaching Assistant

NA

3. Meeting Time and Venue

Date/Time:	Monday:	16:30-17:50
	Friday:	12:00-13:20
Venue:	Room:	4619, Enterprise Center

4. Course Description

Cellular regulation is at the heart of proper function of an organism. An understanding of the molecules and pathways that ensure proper cellular regulation is fundamental in comprehending the normal physiology of the cells and the causes of various disorders. This undergraduate core course provides backgrounds and principles in various fields of cellular regulation. In-depth discussion of selected topics is also provided to give students an appreciation of the complexity and state-of-the-art of current research. Through interactive lectures, topics including signal transduction, cell adhesions, cell differentiation, cell cycle control, checkpoints, apoptosis, aging, and cancer are covered. Moreover, timely special topics in biomedical sciences are included to increase the awareness of current trends in scientific research and application.

5. Intended Learning Outcomes

Course goals: This course provides students with the knowledge of topics in the molecular basis of cellular regulation.

On successful completion of this course, students are expected to be able to:

- 1. Explain the fundamental principles, general approaches and complexities in the discoveries made in the field of cellular regulation.
- 2. Communicate effectively in writing the principles and details of the field of cellular regulation.
- 3. Evaluate the principles and applications of methodology and experimental design in cellular regulation and apply them to other similar areas of study.

6. Assessment Scheme

Students are assessed by written open-book examinations at mid-term and at the end of the course. Both short questions of analytical nature and long essay questions are included in the examination. Emphasis is placed on the genuine comprehension of the subject, organization, presentation, critical analysis, and be able to apply the principles learned to solve related problems. Effective written skills, organization, and critical analysis are expected from the students.

Assessment	Assessing Course ILOs
mid-term exam	1-3
final exam	1-3

7. Student Learning Resources

Lecture notes will be provided.

8. Teaching and Learning Activities

This course is primarily delivered through interactive lectures. Students are expected to read course materials, references, and ask questions in lectures. Through interactive discussion with the lecturers and each other, the students are able to understand the experimental approaches, methodologies, themes, and state-of-the-art development of topics in cellular regulation. Students are expected to think critically and ask questions on various aspects of the lectures. An essay-based written open-book examination at the end of the course further encourages the students to understand the principles of the subject and to apply them to solve related problems.

9. Course Schedule

Pingbo Huang:

Feb 3	Overview of the molecular biology of cellular regulation
Feb 6	Signaling Transduction

- Feb 10Signaling Transduction
- Feb 13 Signaling Transduction
- Feb 17 Signaling Transduction
- Feb 20 Signaling Transduction
- Feb 24 Cell adhesions

Feb 27	Cell adhesions	
Mar 3	Cell adhesions	
Mar 6	Cell differentiation	
Mar 10	Cell differentiation	
Mar 13	Cell differentiation	
Mar 17	Mid-term exam	
Randy Y.C. Poon:		
Mar 20	Cell cycle control	
Mar 24	Cell cycle control	
Mar 27	Cell cycle control	
Mar 31	Cell cycle control	
Apr 3	Maintenance of genome stability	
Apr 7	Public holiday	
Apr 10	Public holiday	
Apr 14	Maintenance of genome stability	
Apr 17	Maintenance of genome stability	
Apr 21	Apoptosis	
Apr 24	Apoptosis	
Apr 28	Apoptosis	
May 1	Public holiday	
May 5	Telomere in normal replication, senescence, and cancer	
May 8	Telomere in normal replication, senescence, and cancer	

NB: Since the topics are highly integrated, all the estimated time and order are approximations.