Items of Course Outlines

1. Instructor (s) – Name and Contact Details
 Jiguang Wang, jgwang@ust.hk

2. Teaching Assistant (s) - Name and Contact Details
 Yuyan Ruan, yruanaf@connect.ust.hk
 Zhi Huang, zhuangdq@connect.ust.hk
 Ruochen Ma, rmaam@connect.ust.hk
 Jihong Tang, jihong.tang@connect.ust.hk
 JUNG Minyoung, mjungaa@connect.ust.hk

3. Meeting Time and Venue – Lectures, Tutorials/ Laboratory

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>12:00</td>
<td>12:00</td>
<td>15:30</td>
</tr>
<tr>
<td></td>
<td>13:20</td>
<td>13:20</td>
<td>16:20</td>
</tr>
<tr>
<td></td>
<td>Rm 4502</td>
<td>Rm 4502</td>
<td>LTK</td>
</tr>
</tbody>
</table>

4. Course Description - Credit Points, Pre-requisite, Exclusion, Brief Information/synopsis
 This course will introduce the basic concept of data science, various types of high-throughput biomedical data, as well as proof-of-concept examples on the application of data science technologies in biology and medicine. Specifically, it will include principles in network biology, statistical analysis, basic machine learning, and practical methods for sequencing data processing and analytics. Students will be evaluated based on Attendance, the mid-term exam, the group project, and the student presentation.

5. Intended Learning Outcomes

 (State what the student is expected to be able to do at the end of the course according to a given standard of performance)

 [1] Obtain a basic understanding of data science as a discipline;
 [2] Understand high-throughput biomedical data of various types;
 [3] Visualize, analyze and interpret biomedical data with sound statistical principles;

6. Assessment Scheme

<table>
<thead>
<tr>
<th>Assessment (Percentage + assessment tasks)</th>
<th>Assessing Course ILOs (Respective course ILOs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% Attendance</td>
<td>[1]</td>
</tr>
</tbody>
</table>
50% Mid-term exam [1-3]
20% Group project [1-4]
20% Student presentation [1-4]

7. Student Learning Resources - Lecture Notes, Readings
Lecture notes and supplementary reading materials will be made available on canvas.

8. Teaching and Learning Activities

<table>
<thead>
<tr>
<th>Teaching Activities</th>
<th>Course ILOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture/Seminar/Small-class/Laboratory</td>
<td>[1-4]</td>
</tr>
<tr>
<td>Tutorial</td>
<td>[3-4]</td>
</tr>
<tr>
<td>Others, pls specify</td>
<td>/</td>
</tr>
</tbody>
</table>

Weekly scheduled activities: 4 hrs

9. Course Schedule
W1: Introduction (T1)
W2: High-throughput biological data (T2)
W3: Biological networks (T3)
W4: Network analysis (T4)
W5: Correlation analysis (T5)
W6: Sequencing analysis (T6)
W7: Differential expression analysis (T7)
W8: Function enrichment analysis (T8)
W9: Mid-term Exam
W10: Machine learning (T9)
W11: Machine learning (T10)
W12: Precision cancer medicine (T11)
W13-14: Student Presentation